Marion County USNG Street Atlas for Emergency Services

Map Legend

Hydrant
30,000 Gallon Tank
"Dry" Hydrant
"Pond"
Fire Pump
Fire Station
Sheriff Office
Library
Heliport
Seaplane
County Office
Park
Interstate Exit
Interstate Mile Marker

Interstate Highway
Major Road
Local Street/National Forest Road
Private Drive
Railroad
Fire Boundary
Lake/River
Swamp/Marsh
Address Grid
Park Land
Cemetery Land
Conservation Area
Ocala National Forest
Campgrounds

Hiking Trailheads
OHV Trailheads
Trail Markers
Trail Gates
Unknown Trail
Biking Trail
Equestrian Trail
Hiking Trail
Multi-use Trail
Mixed Use Motorized
Motorcycle
UTV/ATV/Motorcycle
ATV/Motorcycle
Mobile Home Park
Multi Family
Motel/Hotel

Table of Contents

Key Map ... iv
Address Grid Map .. vi
Reading US National Grid (USNG) Coordinates vii
FGDC USNG Ruler .. ix
Map Pages .. 1
Street Listing Index .. 264
The Marion County Addressing System is based on Florida’s Section, Township and Range system, where each section mile roughly represents 10,000 address digits. For the most part, street names and addresses start from zero and fan out from the ZERO LINE. The County is broken out into four addressing quads, NW, NE, SW and SE at the zero line.

Avenues, Courts, Terraces and Circles run North-South (Avenues lie on or very near the section line, followed by Courts then Terraces. Circles meander but are addressed North-South).

Streets, Places, Lanes and Loops run East-West (Streets lie on or very near the section line, followed by Places then Lanes. Loops meander but are addressed East-West).

Roads meander.

The Marion County Address Grid Locations can quickly be located using this grid system. For example, the Spruce Creek Fire Station, located at 7900 SE 135TH ST, is plotted here by first locating the SE quad. Since this is a STREET we know that it runs East-West so the next step is to find where the 135 grid line is on the East-West, or X, axis. Addresses follow the same grid so to find 7900 we simply need to find the 79 grid line along the axis that is perpendicular to the street’s NAME axis. In this case, the perpendicular axis is the North-South or Y-axis. The intersecting point is where the Fire Station is located.
Reading US National Grid (USNG) Coordinates: “Read right, then up.”

The example below locates the Jefferson Pier at USNG: 18S UJ 2337 0651.

A USNG value has three components.

2. Grid Coordinates: Read right, then up.
3. 100,000-m Square Identification: 2337 0651.

Reading USNG Grid Coordinates:

- Coordinates are always given as an even number of digits (i.e. 23370651).
- Separate coordinates in half (2337 0651) into the easting and northing components.
- Read right to grid line 23. Then measure right another 370 meters. (Think 23.37)
- Read up to grid line 06. Then measure up another 510 meters. (Think 06.37)

The example below locates the Jefferson Pier at USNG: 18S UJ 2337 0651.

A USNG value has three components.

1. Grid Zone Designation (GZD): 18S "Read right, then up,
2. Grid Coordinates: "Read right, then up.
3. 100,000-m Square Identification: 2337 0651.

USNG values have three components as seen above. The GZD gives a USNG value world-wide context with 60 longitudinal zones each 6° wide. Zones are divided into 8° latitudinal bands. Together these make up Grid Zone Designations (GZD). Example: 18S...
Identifying the coordinates of a feature.

- Identify the grid coordinates of the Jefferson Memorial.

1. Place the corner of the grid reader exactly on the point to be identified -- in this case, the center of the Jefferson Memorial.

2. Identify the Easting component: Read right to the grid line immediately before the feature: i.e. grid line 23

3. Identify on the grid reader the grid value where grid line 23 cuts the grid reader: i.e. 35 or 350-meters. Easting = 2335

4. Identify the Northing component: Read up to the grid line immediately before the feature: i.e. grid line 05.

5. Identify on the grid reader the grid value where grid line 05 crosses the grid reader: i.e. 46 or 460-meters. Northing = 0546

- The Jefferson Memorial is located at grid 2335 0546. Add the Grid Zone Designation and 100,000-m Square ID’s to make a complete USNG grid reference: 18S UJ 2335 0546.

Occasionally you need to identify the precise location for a feature or point along the edge of a map that does not have a full grid square to measure from as seen at right.

- Place the grid reader so it references the missing grid line immediately prior to your point of interest (in this case line 22).

- Do this by using the next grid line (in this case line 2) to reference back to grid line 22. Then use the tic marks on the grid reader as references to read right normally.

In this example, the Lincoln Memorial is located at grid 222 065, or 18S UJ 222 065.
This page intentionally left blank
Marjorie Harris Carr
Cross Florida Greenway
State Recreation and Conservation Area

Lake Ocklawaha
Ocala National Forest

Hog Valley
Datum = NAD 1983, 1,000-m USNG
Map Template produced by Delta State University 2009

Scale - 1:24000
Updated: July, 2018
Hog Valley

Datum = NAD 1983, 1,000-m USNG
Map Template produced by Delta State University 2009

Scale - 1:24000

Local Page 14

US National Grid 100,000-m Square ID
Grid Zone Designation 17R
USNG Page 17R MN 12 60

Updated: July, 2018

To Convert a Magnetic Azimuth to a Grid Azimuth
SUBTRACT G-M Angle

To Convert a Grid Azimuth to a Magnetic Azimuth
ADD G-M Angle

Changing by 6' W per yr
Date 2018

Grid Convergency 4° 41'
Datum = NAD 1983, 1,000-m USNG
Map Template produced by Delta State University 2009
Scale - 1:24000
Updated: July, 2018

To Convert a Magnetic Azimuth to a Grid Azimuth
SUBTRACT G-M Angle

To Convert a Grid Azimuth to a Magnetic Azimuth
ADD G-M Angle

G-M Angle
4° 41'
Datum = NAD 1983, 1,000-m USNG

Map Template produced by Delta State University 2009

Meters
0 500 1,000

Feet
0 1,000 2,000

Scale - 1:24000

Updated: July, 2018

US National Grid
100,000-m Square ID
Grid Zone Designation
17R
USNG Page
17R MN 00 55
Local Page 28

To Convert a Magnetic Azimuth to a Grid Azimuth
SUBTRACT G-M Angle

To Convert a Grid Azimuth to a Magnetic Azimuth
ADD G-M Angle

Map Declination
4° 3'W
Changing by 6' W per yr
Date 2018

Grid Convergency
31'

Diagram Not to Scale
Map, Destination
6° 1W
Changing by
6° W per yr
Data 2018
To Convert a
Magnetic Azimuth
to a Grid Azimuth
SUBTRACT G-M Angle
Grid Convergence
41°
G-M Angle
4° 41'

To Convert a
Grid Azimuth
to a Magnetic Azimuth
ADD G-M Angle
G-M Angle
4° 41'

Datum = NAD 1983, 1,000-m USNG
Map Template produced by Delta State University 2009
Scale - 1:24000
Updated: July, 2018

Ocala National Forest
Buckskin Prairie
Lake Delancy
Lake Kerr

Map Page 51
Local Page 51

US National Grid
100,000-m Square ID
MN
Grid Zone Designation
17R
USNG Page
17R MN 24 50

Not to Scale

Scale - 1:24000
0 500 1,000 2,000
Meters

Datum = NAD 1983, 1,000-m USNG
Map Template produced by Delta State University 2009
Updated: July, 2018
North Marion

Map Template produced by Delta State University 2009

Datum = NAD 1983, 1,000-m USNG

Scale - 1:24000

Updated: July, 2018

Diagram Not to Scale

To Convert a Magnetic Azimuth to a Grid Azimuth

SUBTRACT G-M Angle

To Convert a Grid Azimuth to a Magnetic Azimuth

ADD G-M Angle
Datum = NAD 1983, 1,000-m USNG

Map Template produced by Delta State University 2009

Updated: July, 2018
North Marion

Datum = NAD 1983, 1,000-m USNG

Map Template produced by Delta State University 2009

Updated: July, 2018

US National Grid
100,000-m Square ID

Grid Zone Designation
17R LN

USNG Page
17R LN 84 40

Local Page 78

Scale - 1:24000

Unit: 0 500 1,000 Meters

0 1,000 2,000 Feet

Map Declination
6° 3' W

Changing by
6' W per yr

Date 2018

Grid Convergence
21°

G-M Angle
4° 41'

To Convert a Grid Azimuth to a Magnetic Azimuth
SUBTRACT G-M Angle

To Convert a Magnetic Azimuth to a GridAzimuth
ADD G-M Angle

Diagram Not to Scale
Datum = NAD 1983, 1,000-m USNG

Map Template produced by Delta State University 2009

Scale - 1:24000

Updated: July, 2018

Map. Destination
Changing by 6° W per yr Date 2018

Grid Convergence
G-M Angle
Changing by 6° W per yr Date 2018

To Convert a
Magnetic Azimuth
to a Grid Azimuth
SUBTRACT G-M Angle

To Convert a
Grid Azimuth
to a Magnetic Azimuth
ADD G-M Angle

Grid Convergency
31'
4°41'

Diagram Not to Scale

0 500 1,000 2,000
Meters

Datum = NAD 1983, 1,000-m USNG
Map Template produced by Delta State University 2009

Updated: July, 2018

Local Page 83